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In the present investigation, the correlation of composition-processing-property for TC11 titanium alloy
was established using principal component analysis (PCA) and artificial neural network (ANN) based on
the experimental datasets obtained from the forging experiments. During the PCA step, the feature vector is
extracted by calculating the eigenvalue of correlation coefficient matrix for training dataset, and the
dimension of input variables is reduced from 11 to 6 features. Thus, PCA offers an efficient method to
characterize the data with a high degree of dimensionality reduction. During the ANN step, the principal
components were chosen as the input parameters and the mechanical properties as the output parameters,
including the ultimate tensile strength ( rb), yield strength ( r0:2), elongation ( d), and reduction of area (u).
The training of ANN model was conducted using back-propagation learning algorithm. The results clearly
present ideal agreement between the predicted value of PCA-ANN model and experimental value, indi-
cating that the established model is a powerful tool to construct the correlation of composition-processing-
property for TC11 titanium alloy. More importantly, the integrated method of PCA and ANN is also able to
be utilized as the mechanical property prediction for the other alloys.
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1. Introduction

As a typical a + b heat resistance titanium alloy, TC11 alloy
possesses the excellent thermal stability, high temperature
strength, and creep property besides the common advantages,
such as low density, high strength-to-weight ratio, and corro-
sion resistance. It is mainly applied to manufacture the critical
components for aero engines, including compressor disks and
blades. In the past few years, a variety of investigations have
been conducted with respect to TC11 titanium alloy by the
materials scientists throughout the world. Zong et al. (Ref 1)
evaluated the constitutive behavior and the microstructural
evolution of TC11 alloy under hot processing conditions for the
sake of optimizing its hot workability and controlling the
microstructure. Chen et al. (Ref 2) studied the hot deformation
behaviors of TC11 alloy with b-annealed lamellar structure and
forged equiaxed structure in the b-phase region in the
temperature range of 1030-1090 �C and strain rate range of

0.001-0.1 s�1 by means of isothermal compression tests. Song
et al. (Ref 3) primarily investigated the effect of deformation
conditions on deformation mechanisms of TC11 alloy during
subtransus processing for better understanding of the relation-
ship between the processing condition and microstructure
evolution. Sun et al. (Ref 4) developed the optimization model
of chemical composition for TC11 titanium alloy using
combined artificial neural network (ANN) and genetic algo-
rithm. Based on the systemic investigations mentioned above, it
can in fact be revealed that the mechanical properties of TC11
titanium alloy are quite sensitive to its chemical composition
and hot processing parameters. As a result, it is significant to
understand the correlation of composition-processing-property
so that the alloy composition and processing parameters could
be optimized to achieve desirable mechanical properties.
However, the relationship of composition, processing, and
property presents extremely complex and highly nonlinear. The
quantitative analysis of the relationship between them cannot
be carried out exclusively by the conventional experimental
approach. Although the statistical techniques like multilinear
regression method are beneficial to resolve the multivariable
and nonlinear problems, they are quite time- and labor-
consuming types of work to obtain the constants and their
predicted accuracies are also limited.

Recently, ANN is able to simulate certain intelligent
behavior of human brain, which possesses the abilities of
self-learning, self-organizing, self-adaptive, high fault-tolerance
and accurate description of nonlinear problems. ANN has
strong superiority in terms of resolving the complicated
problems which are characterized by multivariable, highly
nonlinear system and implicit function relation. Even if there
are no sufficient experimental datasets, the complex correlation
of composition-processing-property of materials can be still
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elaborated. On the basis of its obvious advantages, ANN
technique has been successfully and extensively applied in the
various fields of metals and alloys, including prediction of
mechanical properties (Ref 5–8), optimization of processing
parameters (Ref 4, 9–11), and the establishment of constitutive
relationship (Ref 12–14). Nevertheless, with the increase of the
number of input variables and sample data, the structure of
neural network might be more complicated and the problem
of over-fitting would happen, which restrict the precision of
prediction and the learning rate of neural network. Conse-
quently, the principal component analysis (PCA) method was
adopted to reduce training data and simplify the network
structure under the premise of insuring the predicted accuracy
of the established model. For instance, Agarwal et al. (Ref 15)
successfully identified various phases and phase-groups using
the combined method of PCA, genetic algorithm and ANN
based on a large number of AB2 compounds. Therefore, the
main objective of this study is to model the correlation of
composition-processing-property of TC11 titanium alloy based
on the combination techniques of PCA and ANN. The
comparison of the potential performance of PCA-ANN and
ANN approaches was conducted to evaluate their respective
availability. The developed network model will be beneficial to
the other alloys also in terms of composition design and
processing optimization.

2. Theory of Principal Component Analysis
and Artificial Neural Network

2.1 Principle Component Analysis

As a mathematical technique, PCA utilizes an orthogonal
linear transformation to convert a set of observations of
possibly correlated variables into a set of values of uncorre-
lated variables called principal components. In other words,
PCA is a kind of statistical approach which is designed to
reduce the number of variables to a small number of indices
while attempting to preserve the relationships present in
the original data more rapidly and effectively. Basically, the
number of principal components is less than or equal to the
number of primary variables. Therefore, the PCA method is
considered to be the simplest of the true eigenvector-based
multivariable analyses, which is able to reveal the internal
structure of the data, which well interprets the variance in the
datasets (Ref 16–18). The implementation of PCA method is
shown in Fig. 1.

The basic principle of PCA method can be explained as
follows. Suppose that there are evaluating indicators numbering
m, evaluating objects numbering n, the value of the jth object
on the ith evaluating indicator is represented as xij, and an
original indicator value matrix xðijÞm�n is formed. This matrix
should be normalized as

~x ¼ xij � �xj
Sj

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; pð Þ ðEq 1Þ

where �xj is the mean value of the sample, and Sj is the sample
standard deviation of xj. Then, the correlation coefficient
matrix R ¼ ðrijÞm�n is achieved, where xij is the data of jth
evaluating object on the indicator and rij 2 ½0; 1�. In order to
construct m-dimensional new evaluating variables as Eq 1, the
eigenvalue of correlation coefficient matrix k1 � k2 � � � �

� km � 0 and the corresponding eigenvector a1; a2; . . . ; am
are calculated.

y1 ¼ a11~x1 þ a21~x2 þ � � � þ am1~xm

y2 ¼ a12~x1 þ a22~x2 þ � � � þ am2~xm

. . .

ym ¼ a1m~x1 þ a2m~x2 þ � � � þ amm~xm

8
>>><

>>>:

ðEq 2Þ

where ym is the m principal component. It is the last step for
the calculation of the informative contribution rate and
accumulated contribution rate represented by Eq 3 and 4,
respectively.

bj ¼
kj

Pm
k¼1 kk

ðEq 3Þ

ap ¼
Pp

k¼1 kk
Pm

k¼1 kk
ðEq 4Þ

where bj is the informative contribution rate of principal yj,
and ap is the accumulated contribution rate of principal
y1; y2; . . . ; yp. When the value of ap is more than 0.8, it can
be thought that the whole procedure of PCA is terminated.

2.2 Artificial Neural Network

ANN is normally a robust and parallel computing system,
which is composed of many simple and interconnected
processing units (neurons) that usually do little more than take
a weighted sum of all their inputs. It is suitable for ANN model
to process information by its internal dynamic response to
external inputs (Ref 19). The applications scope of ANN
derives from their excellent capability to estimate complicated
relation functions that make them applicable and compatible for
modeling nonlinear relationships. The detailed introduction to
the basic algorithm concerning ANN could be found and
deeply understood in the literature (Ref 19, 20). For the purpose
of better application of ANN model, it is quite necessary and

Standardization of the
dataset measurements

Calculate the covariance
matrix

Find the eigenvalue 1,
2,  .  .  . , p, and the

corresponding eigenvectors
a1, a1,  .  .  . , ap

Discard the components
that only account for a small
proportion of the variation in

datasets

Determine the principle
components combining calculated

eigenvectors

Fig. 1 The flow chart of PCA
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meaningful to describe feed-forward network trained by back-
propagation (BP) learning algorithm. In general, BP algorithm
is a sort of generalized form of the least mean squares
algorithm. By means of utilizing the algorithm-generalized
gradient descent search technique, the BP algorithm adjusts the
weights of the network and the threshold of each neuron
recurrently on the basis of the minimization of the mean square
error (MSE) criterion is minimized. Theoretically, BP neural
network which is composed of an input layer, a hidden layer,
and an output layer may approach any continuous functional
relationship in any closing region (Ref 21). Thus, a three-layer
neural network model is employed in the present investigation.
Furthermore, the appropriate number of hidden-layer neurons is
a critical parameter affecting the performance of the neural
network model. Thus, the repetitive trial approach will be
adopted to obtain the optimal network structure and prediction
performance.

3. Modeling the Correlation of Composition-
Processing-Property for TC11 Titanium Alloy

3.1 Data Acquisition and Preprocessing

Basically, the accuracy and applicability of a neural network
model is considerably affected by the quality and size of the
training dataset. In the present research, an amount of data on
mechanical properties of TC11 titanium alloy under various
conditions of forging processing are listed in Table 1. It is
necessary to note that the forging testing was carried out on the
25T-M counter-blow hammer, and the tensile testing at room

temperature was conducted on the Zwick/Z150 universal
testing machine with initial tensile rate of 0.6 mm/min.
However, the collected datasets are rather confusing and in
disorder for utilization of engineering practice. It is inevitable to
perform the procedure of analysis and preprocessing on the
training data. Table 2 lists the detailed information of input
datasets for the ANN model in a primary statistical term. It is
observed from Table 1 that the minimum and maximum values
of standard deviation are, respectively, 0.003 and 0.402, which
indicate that the collected datasets are available for the ANN
model.

Table 1 Selected data information of chemical composition, processing, and property of TC11 alloy

Chemical composition Processing parameter Mechanical properties

Al Mo Zr Si Fe C H O N

Forging
temperature,

�C
Cooling
style(a)

Ultimate
tensile

strength,
MPa

Yield
strength,
MPa

Elongation,
%

Reduction
of area, %

6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 970 2 1070 1030 16 48.6
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 970 2 1060 1000 16.4 42.1
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 970 1 1120 1040 13.2 40.2
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 970 1 1080 1050 14 36.5
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 990 2 1100 1040 14 45
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 990 2 1080 1040 14.5 48
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 990 1 1080 1040 10.8 43.5
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 990 1 1080 1030 10.8 45
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 1010 2 1130 1040 16.4 30.4
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 1010 2 1090 1040 8.8 26.5
6.41 3.46 1.58 0.31 0.08 0.05 0.008 0.009 0.018 1010 1 1100 1050 8.4 19.5
6.41 3.46 1.58 0.31 0.08 0.015 0.008 0.009 0.018 1010 1 1080 1030 8.4 25
6.52 3.5 1.58 0.26 0.073 0.013 0.0006 0.1 0.01 1000 1 1030 970 16 39.3
6.52 3.5 1.58 0.26 0.073 0.013 0.0006 0.1 0.01 1010 1 1080 1000 15 38
6.52 3.5 1.58 0.26 0.073 0.013 0.0006 0.1 0.01 1020 1 1050 995 14.8 28.8
6.52 3.5 1.58 0.26 0.073 0.013 0.0006 0.1 0.01 1030 1 1070 980 13 25
6.25 3.51 1.58 0.21 0.052 0.045 0.0005 0.065 0.017 990 2 1120 1040 13 47.8
6.25 3.51 1.58 0.21 0.052 0.045 0.0005 0.065 0.017 1010 2 1090 980 12.5 26.3
6.34 3.52 1.92 0.28 0.072 0.02 0.0028 0.097 0.01 950 2 1090 955 13.6 43
6.46 3.5 1.92 0.28 0.12 0.02 0.0022 0.102 0.008 970 2 1080 890 16 36.6

(a) 1—air cooling, 2—water cooling

Table 2 Statistical analysis of the input datasets for ANN
model

Minimum
value

Maximum
value

Mean
value

Standard
deviation

Al, wt.% 5.82 6.83 6.36 0.260
Mo, wt.% 2.97 3.63 3.38 0.149
Zr, wt.% 1.48 1.96 1.71 0.140
Si, wt.% 0.21 0.40 0.29 0.036
Fe, wt.% 0.03 0.12 0.07 0.019
C, wt.% 0.002 0.06 0.025 0.015
H, wt.% 0.0005 0.01 0.004 0.003
O, wt.% 0.007 0.122 0.078 0.038
N, wt.% 0.004 0.15 0.024 0.038
Forging temperature, �C 950 1030 984 0.205
Cooling style(a) 1 2 1.80 0.402

(a) 1—air cooling, 2—water cooling
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In order to reduce the dimensions of the input data and
simplify the network structure, PCA was employed for the
preprocessing of the training data after confirming the data
acquisition. The eigenvalue ðkiÞ and accumulated contribution
rate ðapÞ of covariance matrix are shown in Table 3. From
this table, it can be observed that the k6 and a6 of the sixth
principal component are 0.78 and 84.10%, respectively, which
suggests that the characterization of data sample has been
mainly extracted. The value of a6 is very close to 1, implying
such principal components are able to present the character-
ization information completely. More importantly, the dimen-
sion of the training dataset is greatly reduced from 11 to 6,
which significantly facilitates the simplification of the network
size.

3.2 Training and Verifying the Neural Network

In order to balance the weight of each input and output
parameter as well as alleviate the training difficulty of the
network during training process, it is necessary to normalize
the training data. In general, it is strongly recommended that the
data be unified between slightly offset values such as from 0.1
to 0.9 rather than between 0 and 1, so as to avoid saturation of
the sigmoid function bringing about slow or no learning. The
method of normalization is extensively used as

Zi ¼ 0:1þ 0:8� Z � Zmin

Zmax � Zmin

� �

ðEq 5Þ

where Zi is the normalized data of the corresponding to Z,
and Zmin and Zmax are the minimum and maximum values of
Z, respectively. Subsequently, 85 of the datasets were ran-
domly selected as training set, and the remaining five of data-
sets were used for verifying the trained network model.
Figure 2 shows the correlation of composition-processing-
property for TC11 titanium alloy in the form of schematic
implementation. As shown in this figure, the fully connected
multilayer feed-forward neural network is composed of three
layers, including one input layer, one hidden layer and one
output layer. The numbers of neurons present in the input
and output layers are associated with the number of different
variables. In the present study, the input variables of the net-
work model are the first and the second principal components
based on the chemical compositions (Al, Mo, Zr, Si, Fe, C,
H, O, and N) and processing parameters (forging temperature
and cooling style). The output variables of ANN are the
mechanical properties, including ultimate tensile strength
ðrbÞ; yield strength ðr0:2Þ; elongation ðdÞ; and reduction of
area (u). The number of the hidden-layer neurons of ANN
model was acquired by trial-and-error approach from 5 to 20.
Figure 3 shows the influence of the number of neurons in
hidden layer on the performance of the network. It is found
that when the neurons in the hidden layer reached 15, the
ANN model represented optimum performance which was
quantitatively evaluated by the term of MSE. The tansig
and logsig were chosen as the transfer functions used for

input-hidden layer and hidden-output layer, respectively. Also,
the trainlm algorithm was found to train the ANN model in a
robust and fast way. During the training step, the whole cal-
culation of the neural network was performed with a training
set using MATLAB 7.4� software. The ANN model corre-
lated the input and output variables by searching for the most
desired set of weights to minimize the objective function.

4. Results and Discussion

In the present research, composition-processing-property of
TC11 titanium alloy were first correlated using ANN model,
and then the PCA-ANN correlation developed above was used
for the properties estimations from the alloy compositions and
hot processing parameters. Furthermore, attempts were also
made to compare prediction accuracies of ANN and PCA-ANN
correlation model, and thus to provide a set of reliable tool for

Table 3 The eigenvalues of covariance matrix and their accumulated contribution rate

i 1 2 3 4 5 6 7 8 9 10 11

ki 2.55 2.01 1.83 1.06 1.02 0.78 0.69 0.44 0.31 0.19 0.12
Qm, % 23.18 41.37 58.00 67.64 77.00 84.10 90.37 94.41 97.19 98.93 100

Fig. 2 Schematic implementation of the development of the corre-
lation of composition-processing-property for TC11 titanium alloy

Fig. 3 Influence of the number of neurons in hidden layer on the
performance of the network
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the quality control of TC11 titanium alloy. During the training
procedure, the ANN achieved a stable state after 658 iterative
cycles. The comparison result of ANN and PCA-ANN model
for the composition-processing-property of TC11 titanium alloy
is listed in Table 4. It is observed from this table that the
dimension of the input layer has been greatly simplified after
the PCA process, which directly affects the size of the network
model. Thus, it can be considered that the development of the
correlation model of composition-processing-property for TC11
alloy has been optimized based on the PCA-ANN approach.
The evaluation of the performance of the training network is
quantified by correlation coefficient (R), which is defined as

R ¼
PN

i¼1 ðEi � �EÞðPi � �PÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 ðEi � �EÞ2
PN

i¼1 ðPi � �PÞ2
q ðEq 6Þ

where N is the total number of data employed in the investiga-
tion. E is the experimental value, and P is the predicted value
obtained from the neural network model. �E and �P are the
mean values of E and P, respectively. Figure 4 depicts a com-
parison of the experimental versus predicted data point with
PCA-ANN using training datasets. It is indicted that 90% of
the data points are quite close to the line inclined at 45� to the
horizon, and the R value is found to be more than 0.918, sug-
gesting that the accuracy of the predicted mechanical proper-
ties based on the PCA-ANN model is preferable, and a good
agreement between the predicted and experimental data has
been achieved by the established model. Therefore, the trained
neural network is able to successfully predict the mechanical
properties of TC11 alloy. In order to further study the predic-
tion performance of the present model, the analyses of the
mean of absolute relative error (MARE) and mean of absolute
error (MAE) were carried out, which are described as follows:

MARE ð%Þ ¼ 1

N

XN

i¼1

Ei � Pi

Ei

�
�
�
�

�
�
�
�� 100 ðEq 7Þ

Table 4 Compared result of ANN and PCA-ANN model
for the composition-processing-property of TC11 titanium
alloy

Number of
input-layer
neurons

Number of
hidden-layer
neurons

Training
epochs/goal

error
Correlation
coefficient

ANN model 11 15 5000/0.001 0.825
PCA-ANN model 6 15 658/0.001 0.936

Fig. 4 Comparison of predicted mechanical properties for TC11 titanium alloy by the ANN model with experimental value: (a) ultimate tensile
strength, (b) yield strength, (c) elongation, and (d) reduction of area
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MAE ðMPaÞ ¼ 1

N

XN

i¼1
Pi � Eij j ðEq 8Þ

Figure 5 presents the mechanical properties of TC11 alloy
predicted from the ANN model compared with the experimen-
tal values. It is clearly observed from this figure that the relative
errors between the predicted and the experimental values are all
less than 6.5%, which implies that the satisfactory prediction
results of ANN model can be achieved. In addition, the MARE
and MAE are 3.24 and 6.94, respectively. Hence, it is
concluded that the established correlation model based on the
PCA and ANN can be used to predict the mechanical properties
and optimize hot processing parameters of TC11 titanium alloy.

5. Conclusions

In the present investigation, on the basis of the large number
of the experimental datasets obtained from the forging exper-
iments under various conditions of chemical composition and
forging processing, the correlation of composition-processing-
property of TC11 titanium alloy was successfully developed,

using the combined techniques of PCA and ANN. It was found
that the PCA method was performed for robust feature
extraction from the input variables. After the PCA process,
the dimension of the feature vector significantly reduced from
11 to 6, which contains most of the useful information from the
original vector. Meanwhile, a powerful correlation model
between the principal components and mechanical properties
of TC11 titanium alloy was constructed with the help of
application of ANN approach trained with the BP learning
algorithm. The MARE and MAE are only 3.24 and 6.94,
respectively, which firmly suggests that the predicted values are
in quite good agreement with the experimental values. Therefore,
the developed correlation model on composition-processing-
property is a more promising solution for the optimization of
processing parameter and control of mechanical property with
high reliability. In the future researches, the PCA-ANN
intelligent approach can be applied to the other alloys. Also,
the additional information such as a variety and a number of
affecting factors can be taken into consideration.
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